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Introduction

� Common trend in large-scale clusters: high performance
data networks

� I/O can be limited by the interconnect performance

Open problems:

influence of the I/O servers placement
effect of using dedicated or shared I/O servers
potential interference of background I/O traffic with
computation
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Introduction

� Some of the most powerful systems in the world use the
Quadrics interconnection network:

� The Terascale Computing System (TCS) at the Pittsburgh
Supercomputing Center – the second most powerful
computer in the world

ASCI Q machine, currently under development at Los
Alamos National Laboratory (30 TeraOps, expected to be
delivered by the end of 2002)

Objective: experimental evaluation of a Quadrics-based
cluster under I/O traffic
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Quadrics Network Design Overview

� Fat-tree

� Based on 4x4 switches

� Wormhole switching

� 2 virtual channels per physical link

� Adaptive routing
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Quadrics Network Design Overview

� Fat-tree

� Based on 4x4 switches

� Wormhole switching

� 2 virtual channels per physical link

� Adaptive routing

Some of the most important aspects of this network are:

� the integration of the local memory into a distributed virtual
shared memory,

� the support for zero-copy remote DMA transactions and

� the hardware support for collective communication.
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Experimental Framework

� The experimental results are obtained on a 64-node cluster
of Compaq AlphaServer ES40s running Tru64 Unix.

� Each Alpahserver is attached to a quaternary fat-tree of
dimension three through a 64 bit, 33 MHz PCI bus using
the Elan3 card.

� In order to expose the real network performance, we place
the communication buffers in Elan memory.
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Experimental Results

� We present:

� unidirectional and bidirectional ping results, as a
reference, and

� single hot-spot

� multiple hot-spots

� combined traffic: I/O plus uniform traffic
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Unidirectional Ping
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Unidirectional Ping
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Bidirectional Ping
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Ping Summary

0

50

100

150

200

250

300

350

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Ping Bandwidth

MPI
Elan3, Elan to Elan
Elan3, Main to Main

0

50

100

150

200

250

300

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
an

dw
id

th
 M

B
/s

Msg Size (bytes)

Bidirectional Ping Bandwidth

MPI
Elan3, Elan to Elan
Elan3, Main to Main

Unidirectional Bidirectional

Elan Memory 335 MB/s 280 MB/s

Main Memory 200 MB/s 80 MB/s

Workshop on Communication Architecture for Clusters ’02 – p.13



Hot-spot

Objective: analyze the behavior of a single I/O node
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Hot-spot
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Hot-spot
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Multiple Hot-spots

Clustered Mapping

Distributed Mapping
Dedicated I/O

Shared I/O
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Multiple Hot-spots

Clustered I/O mapping
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Multiple Hot-spots

Distributed I/O mapping
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Multiple Hot-spots

Objectives:

� behavior of multiple I/O nodes

� influence of the I/O node (hot-node) mapping: clustered
and distributed

� effects of the application mapping: shared I/O and
dedicated I/O

� influence of the traffic pattern: random and deterministic

� effect of the I/O read/write ratio
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Multiple Hot-spots
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Multiple Hot-spots

50

100

150

200

250

300

350

50 100 150 200 250 300 350 400 450 500

A
cc

ep
te

d 
Lo

ad
 (

M
B

/s
)

Offered Load per I/O Node (MB/s)

I/O Traffic: deterministic - 64 Nodes (8 I/O nodes - clustered)

shared I/O - T uniform
shared I/O - T exponential
dedicated I/O - T uniform

dedicated I/O - T exponential

�

Asymptotic bandwidth of 320 MB/s
Workshop on Communication Architecture for Clusters ’02 – p.23



Multiple Hot-spots
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Multiple Hot-spots Summary

Clustered I/O Distributed I/O

Random Traffic 196 MB/s 234 MB/s

Deterministic Traffic 320 MB/s 338 MB/s

� Better results obtained with:

� distributed I/O

� deterministic traffic

� No significant effect of the application mapping

� Insensitive to read/write ratio

� Insensitive to time and message size distributions
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Combined Traffic
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Combined Traffic
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Combined Traffic with Shared I/O
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Combined Traffic with Shared I/O I/O load = 0.1
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Combined Traffic with Shared I/O I/O load = 0.3
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Combined Traffic with Shared I/O I/O load = 0.5
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Combined Traffic with Dedicated I/O
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Combined Traffic with Dedicated I/O I/O load = 0.1

40

60

80

100

120

140

50 100 150 200 250 300 350 400

A
cc

ep
te

d 
Lo

ad
 (

M
B

/s
)

Offered Load (MB/s)

Combined Traffic - 64 Nodes


clustered - 1i
clustered - 1c

distributed

Bandwidth delivered by each compute node.

Workshop on Communication Architecture for Clusters ’02 – p.33



Combined Traffic with Dedicated I/O I/O load = 0.3
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Combined Traffic with Dedicated I/O I/O load = 0.5
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Combined Traffic Summary

SENSITIVE TO 
BACKGROUND I/O TRAFFIC
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Conclusions

� A single hot-node (I/O server) can handle, without
performance degradation, traffic generated by up to 32
nodes.

With multiple I/O servers it is more efficient to distribute
them rather than cluster them, with a bandwidth increase of
up to 20%.

The performance is insensitive to both the fraction of I/O
reads and writes and to the mapping of the parallel job.

Multiple jobs can be run in parallel without interference, as
long as these jobs are not mapped on the I/O nodes.

The I/O job can interfere with the compute job when the
latter is mapped on the I/O nodes.
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Additional Information

http://www.c3.lanl.gov/~fabrizio/quadrics.html
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APPENDIX

Workshop on Communication Architecture for Clusters ’02 – p.39



Quadrics Network Design Overview

� QsNET provides an abstraction of distributed virtual shared
memory

� Each process can map a portion of its address space into the
global memory

� These address spaces constitutes the virtual shared memory

� This shared memory is fully integrated with the native
operating system

� Based on two building blocks:

� a network interface card called Elan

� a crossbar switch called Elite
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Elite

� 8 bidirectional links with 2 virtual channels in each
direction

� An internal 16x8 full crossbar switch

� 400 MB/s on each link direction

� Packet error detection and recovery, with routing and data
transactions CRC protected

� 2 priority levels plus an aging mechanism

� Adaptive routing

� Hardware support for broadcast
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Network Topology: Quaternary Fat-Tree
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Network Topology: Quaternary Fat-Tree
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Network Topology: Quaternary Fat-Tree
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Packet Format

transaction type

context

memory address

data

CRC

CRC

routing tags

packet header

route one or more transactions EOP token

� 320 bytes data payload (5 transactions with 64 bytes each)

� 74-80 bytes overhead
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Programming Libraries

� Elan3lib

� event notification

� memory mapping and allocation

� remote DMA

� Elanlib and Tports

� collective communication

� tagged message passing

� MPI, shmem User  Applications

user space

kernel space system calls elan kernel comms

elan3lib

elanlib
tport

mpishmem
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